Primality proof for n = 408902065564047647519:
Take b = 2.
b^(n-1) mod n = 1.
204451032782023823759 is prime.
b^((n-1)/204451032782023823759)-1 mod n = 3, which is a unit, inverse 136300688521349215840.
(204451032782023823759) divides n-1.
(204451032782023823759)^2 > n.
n is prime by Pocklington's theorem.