Primality proof for n = 41293497469967:
Take b = 2.
b^(n-1) mod n = 1.
2949535533569 is prime.
b^((n-1)/2949535533569)-1 mod n = 16383, which is a unit, inverse 24940435662902.
(2949535533569) divides n-1.
(2949535533569)^2 > n.
n is prime by Pocklington's theorem.