Primality proof for n = 41347742847751193213:
Take b = 2.
b^(n-1) mod n = 1.
1003679 is prime.
b^((n-1)/1003679)-1 mod n = 26706332448537466961, which is a unit, inverse 75295766380036379.
2837 is prime.
b^((n-1)/2837)-1 mod n = 15393029802464470236, which is a unit, inverse 38003118359527610930.
569 is prime.
b^((n-1)/569)-1 mod n = 24449040016492572914, which is a unit, inverse 30813572042053864746.
(569 * 2837 * 1003679) divides n-1.
(569 * 2837 * 1003679)^2 > n.
n is prime by Pocklington's theorem.