Primality proof for n = 421249166674228746791672110734682167926895081980396304944335052891:
Take b = 2.
b^(n-1) mod n = 1.
293832518631314000633668609 is prime.
b^((n-1)/293832518631314000633668609)-1 mod n = 403325781788936900841938649846142678633761005980728257258598403839, which is a unit, inverse 38106499467101684166113136784306761306845270548430860853671767097.
168650669431260323389 is prime.
b^((n-1)/168650669431260323389)-1 mod n = 197154627206182196071760692248347709555879485781449996480262452476, which is a unit, inverse 122955436430098679138891046406631176817945058889816095422483667752.
(168650669431260323389 * 293832518631314000633668609) divides n-1.
(168650669431260323389 * 293832518631314000633668609)^2 > n.
n is prime by Pocklington's theorem.