Primality proof for n = 4221402400821188431:
Take b = 2.
b^(n-1) mod n = 1.
2468656374749233 is prime.
b^((n-1)/2468656374749233)-1 mod n = 672456500494415253, which is a unit, inverse 2991756357733039994.
(2468656374749233) divides n-1.
(2468656374749233)^2 > n.
n is prime by Pocklington's theorem.