Primality proof for n = 4232756191:
Take b = 2.
b^(n-1) mod n = 1.
1423 is prime.
b^((n-1)/1423)-1 mod n = 2133709772, which is a unit, inverse 515704736.
263 is prime.
b^((n-1)/263)-1 mod n = 547850884, which is a unit, inverse 3199132789.
(263 * 1423) divides n-1.
(263 * 1423)^2 > n.
n is prime by Pocklington's theorem.