Primality proof for n = 4303872990401223419424669070518309027547364146662699977:

Take b = 2.

b^(n-1) mod n = 1.

1241450905117 is prime.
b^((n-1)/1241450905117)-1 mod n = 2850356262567078687593073618236208048058450786145315665, which is a unit, inverse 1540028414839707159982103144833567284151367064224807922.

25605588031 is prime.
b^((n-1)/25605588031)-1 mod n = 1038251587218339055989905745773106814554020957494493246, which is a unit, inverse 4220079241747103403332620047078740277585921635967717640.

915473063 is prime.
b^((n-1)/915473063)-1 mod n = 2924745530870563840254746326484682101882402721808420403, which is a unit, inverse 3396148402138886269232297409802179831165106376914183991.

(915473063 * 25605588031 * 1241450905117) divides n-1.

(915473063 * 25605588031 * 1241450905117)^2 > n.

n is prime by Pocklington's theorem.