Primality proof for n = 43462789:
Take b = 2.
b^(n-1) mod n = 1.
88339 is prime. b^((n-1)/88339)-1 mod n = 42177656, which is a unit, inverse 7707404.
(88339) divides n-1.
(88339)^2 > n.
n is prime by Pocklington's theorem.