Primality proof for n = 442454434174541737154207748628961512007:
Take b = 2.
b^(n-1) mod n = 1.
79879924901292653287162734017 is prime.
b^((n-1)/79879924901292653287162734017)-1 mod n = 420732389808060423079108721936000878062, which is a unit, inverse 222735509909691272560813252787470476308.
(79879924901292653287162734017) divides n-1.
(79879924901292653287162734017)^2 > n.
n is prime by Pocklington's theorem.