Primality proof for n = 4434155615661930479:
Take b = 2.
b^(n-1) mod n = 1.
1257559732178653 is prime.
b^((n-1)/1257559732178653)-1 mod n = 415787812636281766, which is a unit, inverse 1010501025739283171.
(1257559732178653) divides n-1.
(1257559732178653)^2 > n.
n is prime by Pocklington's theorem.