Primality proof for n = 447368281760320663747:
Take b = 2.
b^(n-1) mod n = 1.
26312496861293 is prime.
b^((n-1)/26312496861293)-1 mod n = 256341153081284713848, which is a unit, inverse 30623399940583875494.
(26312496861293) divides n-1.
(26312496861293)^2 > n.
n is prime by Pocklington's theorem.