Primality proof for n = 45265241663:
Take b = 2.
b^(n-1) mod n = 1.
997 is prime.
b^((n-1)/997)-1 mod n = 25636981309, which is a unit, inverse 38287484439.
661 is prime.
b^((n-1)/661)-1 mod n = 8343847944, which is a unit, inverse 13961776954.
(661 * 997) divides n-1.
(661 * 997)^2 > n.
n is prime by Pocklington's theorem.