Primality proof for n = 4537129159:
Take b = 2.
b^(n-1) mod n = 1.
28771 is prime.
b^((n-1)/28771)-1 mod n = 4037130531, which is a unit, inverse 4344480992.
8761 is prime.
b^((n-1)/8761)-1 mod n = 2369722005, which is a unit, inverse 4416811106.
(8761 * 28771) divides n-1.
(8761 * 28771)^2 > n.
n is prime by Pocklington's theorem.