Primality proof for n = 4539345667931:
Take b = 2.
b^(n-1) mod n = 1.
453934566793 is prime.
b^((n-1)/453934566793)-1 mod n = 1023, which is a unit, inverse 3678511787600.
(453934566793) divides n-1.
(453934566793)^2 > n.
n is prime by Pocklington's theorem.