Primality proof for n = 45456291673021:
Take b = 2.
b^(n-1) mod n = 1.
84178317913 is prime.
b^((n-1)/84178317913)-1 mod n = 10767698974475, which is a unit, inverse 33565861275020.
(84178317913) divides n-1.
(84178317913)^2 > n.
n is prime by Pocklington's theorem.