Primality proof for n = 45467703727:
Take b = 2.
b^(n-1) mod n = 1.
78607 is prime.
b^((n-1)/78607)-1 mod n = 27286002387, which is a unit, inverse 22127292512.
647 is prime.
b^((n-1)/647)-1 mod n = 40117416596, which is a unit, inverse 13032450985.
(647 * 78607) divides n-1.
(647 * 78607)^2 > n.
n is prime by Pocklington's theorem.