Primality proof for n = 457345879:
Take b = 2.
b^(n-1) mod n = 1.
1283 is prime.
b^((n-1)/1283)-1 mod n = 359965491, which is a unit, inverse 293858496.
491 is prime.
b^((n-1)/491)-1 mod n = 334944558, which is a unit, inverse 403242976.
(491 * 1283) divides n-1.
(491 * 1283)^2 > n.
n is prime by Pocklington's theorem.