Primality proof for n = 463:
Take b = 2.
b^(n-1) mod n = 1.
11 is prime.
b^((n-1)/11)-1 mod n = 157, which is a unit, inverse 174.
7 is prime.
b^((n-1)/7)-1 mod n = 117, which is a unit, inverse 186.
(7 * 11) divides n-1.
(7 * 11)^2 > n.
n is prime by Pocklington's theorem.