Primality proof for n = 46523541035814968339936406074986559003387:
Take b = 2.
b^(n-1) mod n = 1.
1869236796843064056413 is prime.
b^((n-1)/1869236796843064056413)-1 mod n = 1615835071203799957896331780948737734917, which is a unit, inverse 26557837114806112892085461676720962847008.
(1869236796843064056413) divides n-1.
(1869236796843064056413)^2 > n.
n is prime by Pocklington's theorem.