Primality proof for n = 4662689:
Take b = 2.
b^(n-1) mod n = 1.
145709 is prime. b^((n-1)/145709)-1 mod n = 630726, which is a unit, inverse 2706976.
(145709) divides n-1.
(145709)^2 > n.
n is prime by Pocklington's theorem.