Primality proof for n = 47166934095163:
Take b = 2.
b^(n-1) mod n = 1.
73965767 is prime.
b^((n-1)/73965767)-1 mod n = 8615364767042, which is a unit, inverse 36714514056155.
(73965767) divides n-1.
(73965767)^2 > n.
n is prime by Pocklington's theorem.