Primality proof for n = 473067492335442271493300927295906676954200039911784049787606885062385680884289589892557:

Take b = 2.

b^(n-1) mod n = 1.

463692400718849804323 is prime.
b^((n-1)/463692400718849804323)-1 mod n = 180099834192912351379758054672290833466012460364371036755394651103215606883221495790869, which is a unit, inverse 362587894733466008724430193016889629551776377719440332376114883109460639884561521726535.

52060951900024830751 is prime.
b^((n-1)/52060951900024830751)-1 mod n = 166840599231581549715000834075755227209154917961376669705383033845685425640714585742173, which is a unit, inverse 341551253915996945279054419430272534966447357592899769723419227093793575398597691696662.

16864411292623 is prime.
b^((n-1)/16864411292623)-1 mod n = 466845473532571164342715321122106965258108078030258968944352571324517601460185226190481, which is a unit, inverse 231532649487304414823978048812349179757921379280337315709153160181070073472336943025159.

(16864411292623 * 52060951900024830751 * 463692400718849804323) divides n-1.

(16864411292623 * 52060951900024830751 * 463692400718849804323)^2 > n.

n is prime by Pocklington's theorem.