Primality proof for n = 4759:
Take b = 2.
b^(n-1) mod n = 1.
61 is prime.
b^((n-1)/61)-1 mod n = 4018, which is a unit, inverse 4014.
13 is prime.
b^((n-1)/13)-1 mod n = 51, which is a unit, inverse 3266.
(13 * 61) divides n-1.
(13 * 61)^2 > n.
n is prime by Pocklington's theorem.