Primality proof for n = 4868010057124911294296551654477037:
Take b = 2.
b^(n-1) mod n = 1.
131342845410725759 is prime.
b^((n-1)/131342845410725759)-1 mod n = 708004873331607143739514225224759, which is a unit, inverse 2864366210929895681873949011946717.
(131342845410725759) divides n-1.
(131342845410725759)^2 > n.
n is prime by Pocklington's theorem.