Primality proof for n = 490812343031:
Take b = 2.
b^(n-1) mod n = 1.
49081234303 is prime.
b^((n-1)/49081234303)-1 mod n = 1023, which is a unit, inverse 443794151812.
(49081234303) divides n-1.
(49081234303)^2 > n.
n is prime by Pocklington's theorem.