Primality proof for n = 4925250774549309901534880012517951725634967408808180833492824513836280681662413952113716808420015056602872733754209:
Take b = 2.
b^(n-1) mod n = 1.
18895059184283836713882776167547354480336145147521570807563207379026619142420663903487643611 is prime.
b^((n-1)/18895059184283836713882776167547354480336145147521570807563207379026619142420663903487643611)-1 mod n = 3597614113951466895147998650724379468258880562036701382706999900440644579565735920795780447629366880917099816276857, which is a unit, inverse 4727776721363219925324679101071675435270559485594293003865817105082710304315013383143363559132534173933173291058904.
(18895059184283836713882776167547354480336145147521570807563207379026619142420663903487643611) divides n-1.
(18895059184283836713882776167547354480336145147521570807563207379026619142420663903487643611)^2 > n.
n is prime by Pocklington's theorem.