Primality proof for n = 4925250774549309901534880012517951725634967408808180833493204202978852474404940886836912197553998376631916975561717:
Take b = 2.
b^(n-1) mod n = 1.
6033870777901550694409388750181488091053823905087249736002431750549727835387319723 is prime.
b^((n-1)/6033870777901550694409388750181488091053823905087249736002431750549727835387319723)-1 mod n = 1597308945353081518550696710782078538749812602308824852200474319581601455790775890599712856366651432852813156125773, which is a unit, inverse 2087375933121841600983985669231337845993037572448514996056456154959731500834719730444710219858243071946797492812539.
(6033870777901550694409388750181488091053823905087249736002431750549727835387319723) divides n-1.
(6033870777901550694409388750181488091053823905087249736002431750549727835387319723)^2 > n.
n is prime by Pocklington's theorem.