Primality proof for n = 49393939847159:
Take b = 2.
b^(n-1) mod n = 1.
2520431 is prime.
b^((n-1)/2520431)-1 mod n = 33846986977977, which is a unit, inverse 2379467939859.
9341 is prime.
b^((n-1)/9341)-1 mod n = 555983474733, which is a unit, inverse 38217679020950.
(9341 * 2520431) divides n-1.
(9341 * 2520431)^2 > n.
n is prime by Pocklington's theorem.