Primality proof for n = 49736333249:
Take b = 2.
b^(n-1) mod n = 1.
811 is prime.
b^((n-1)/811)-1 mod n = 24583646604, which is a unit, inverse 38268944802.
373 is prime.
b^((n-1)/373)-1 mod n = 23460055563, which is a unit, inverse 17217390578.
(373 * 811) divides n-1.
(373 * 811)^2 > n.
n is prime by Pocklington's theorem.