Primality proof for n = 50380057830419:
Take b = 2.
b^(n-1) mod n = 1.
501783409 is prime.
b^((n-1)/501783409)-1 mod n = 36507808164655, which is a unit, inverse 3478089504644.
(501783409) divides n-1.
(501783409)^2 > n.
n is prime by Pocklington's theorem.