Primality proof for n = 504842927415879955942747:
Take b = 2.
b^(n-1) mod n = 1.
31937378989 is prime.
b^((n-1)/31937378989)-1 mod n = 481425386021623961229324, which is a unit, inverse 361246053519525552877203.
102244957 is prime.
b^((n-1)/102244957)-1 mod n = 57438905949684667228320, which is a unit, inverse 200692158008846139750302.
(102244957 * 31937378989) divides n-1.
(102244957 * 31937378989)^2 > n.
n is prime by Pocklington's theorem.