Primality proof for n = 50711861:
Take b = 2.
b^(n-1) mod n = 1.
3919 is prime.
b^((n-1)/3919)-1 mod n = 49876571, which is a unit, inverse 28475661.
647 is prime.
b^((n-1)/647)-1 mod n = 41583436, which is a unit, inverse 34551630.
(647 * 3919) divides n-1.
(647 * 3919)^2 > n.
n is prime by Pocklington's theorem.