Primality proof for n = 52060951900024830751:
Take b = 2.
b^(n-1) mod n = 1.
532731547 is prime.
b^((n-1)/532731547)-1 mod n = 20868794780281631884, which is a unit, inverse 26187975940538776833.
10023031 is prime.
b^((n-1)/10023031)-1 mod n = 25235745741590589850, which is a unit, inverse 29134923866134425413.
(10023031 * 532731547) divides n-1.
(10023031 * 532731547)^2 > n.
n is prime by Pocklington's theorem.