Primality proof for n = 52357003:
Take b = 2.
b^(n-1) mod n = 1.
8209 is prime. b^((n-1)/8209)-1 mod n = 8929394, which is a unit, inverse 23733973.
(8209) divides n-1.
(8209)^2 > n.
n is prime by Pocklington's theorem.