Primality proof for n = 52934372406331568616067:
Take b = 2.
b^(n-1) mod n = 1.
1137346319589436823 is prime.
b^((n-1)/1137346319589436823)-1 mod n = 38013909046553348206565, which is a unit, inverse 17208243580045568319523.
(1137346319589436823) divides n-1.
(1137346319589436823)^2 > n.
n is prime by Pocklington's theorem.