Primality proof for n = 529709925838459440593:
Take b = 2.
b^(n-1) mod n = 1.
246608641 is prime.
b^((n-1)/246608641)-1 mod n = 271434630141899184786, which is a unit, inverse 133260732011274817172.
105957871 is prime.
b^((n-1)/105957871)-1 mod n = 287699440846150541926, which is a unit, inverse 28897953269400817900.
(105957871 * 246608641) divides n-1.
(105957871 * 246608641)^2 > n.
n is prime by Pocklington's theorem.