Primality proof for n = 53014379452169:
Take b = 2.
b^(n-1) mod n = 1.
60901 is prime.
b^((n-1)/60901)-1 mod n = 37759390068804, which is a unit, inverse 42820042899363.
18947 is prime.
b^((n-1)/18947)-1 mod n = 24149381496801, which is a unit, inverse 30628402768247.
(18947 * 60901) divides n-1.
(18947 * 60901)^2 > n.
n is prime by Pocklington's theorem.