Primality proof for n = 545358713:
Take b = 2.
b^(n-1) mod n = 1.
28181 is prime. b^((n-1)/28181)-1 mod n = 420071725, which is a unit, inverse 160797069.
(28181) divides n-1.
(28181)^2 > n.
n is prime by Pocklington's theorem.