Primality proof for n = 545892229581467:
Take b = 2.
b^(n-1) mod n = 1.
354936430157 is prime.
b^((n-1)/354936430157)-1 mod n = 167174330147262, which is a unit, inverse 86930993119362.
(354936430157) divides n-1.
(354936430157)^2 > n.
n is prime by Pocklington's theorem.