Primality proof for n = 548794774797769816735663:
Take b = 2.
b^(n-1) mod n = 1.
1293654617 is prime.
b^((n-1)/1293654617)-1 mod n = 335401971689347278080740, which is a unit, inverse 206393885423428929372147.
5315399 is prime.
b^((n-1)/5315399)-1 mod n = 374203729342006531870518, which is a unit, inverse 392085532683222324603827.
(5315399 * 1293654617) divides n-1.
(5315399 * 1293654617)^2 > n.
n is prime by Pocklington's theorem.