Primality proof for n = 5507309:
Take b = 2.
b^(n-1) mod n = 1.
1376827 is prime. b^((n-1)/1376827)-1 mod n = 15, which is a unit, inverse 367154.
(1376827) divides n-1.
(1376827)^2 > n.
n is prime by Pocklington's theorem.