Primality proof for n = 55942463741690639:
Take b = 2.
b^(n-1) mod n = 1.
37344768852931 is prime.
b^((n-1)/37344768852931)-1 mod n = 16681160088318799, which is a unit, inverse 19671609748915252.
(37344768852931) divides n-1.
(37344768852931)^2 > n.
n is prime by Pocklington's theorem.