Primality proof for n = 565665984379:
Take b = 2.
b^(n-1) mod n = 1.
603103 is prime.
b^((n-1)/603103)-1 mod n = 399209210778, which is a unit, inverse 344602695327.
1579 is prime.
b^((n-1)/1579)-1 mod n = 28827542827, which is a unit, inverse 191830096649.
(1579 * 603103) divides n-1.
(1579 * 603103)^2 > n.
n is prime by Pocklington's theorem.