Primality proof for n = 5829032467:
Take b = 2.
b^(n-1) mod n = 1.
13241 is prime.
b^((n-1)/13241)-1 mod n = 2471543224, which is a unit, inverse 232479808.
661 is prime.
b^((n-1)/661)-1 mod n = 5231155264, which is a unit, inverse 5595283223.
(661 * 13241) divides n-1.
(661 * 13241)^2 > n.
n is prime by Pocklington's theorem.