Primality proof for n = 58964693:
Take b = 2.
b^(n-1) mod n = 1.
14741173 is prime. b^((n-1)/14741173)-1 mod n = 15, which is a unit, inverse 51102734.
(14741173) divides n-1.
(14741173)^2 > n.
n is prime by Pocklington's theorem.