Primality proof for n = 59016512273:
Take b = 2.
b^(n-1) mod n = 1.
97151 is prime.
b^((n-1)/97151)-1 mod n = 12221549787, which is a unit, inverse 18966582183.
37967 is prime.
b^((n-1)/37967)-1 mod n = 11555075368, which is a unit, inverse 39522313421.
(37967 * 97151) divides n-1.
(37967 * 97151)^2 > n.
n is prime by Pocklington's theorem.