Primality proof for n = 5924666185313169299:
Take b = 2.
b^(n-1) mod n = 1.
36423749 is prime.
b^((n-1)/36423749)-1 mod n = 4072408677236125012, which is a unit, inverse 2492376091309737249.
2295569 is prime.
b^((n-1)/2295569)-1 mod n = 4662629966324032767, which is a unit, inverse 2212833590422945032.
(2295569 * 36423749) divides n-1.
(2295569 * 36423749)^2 > n.
n is prime by Pocklington's theorem.