Primality proof for n = 59724981817583:
Take b = 2.
b^(n-1) mod n = 1.
29862490908791 is prime.
b^((n-1)/29862490908791)-1 mod n = 3, which is a unit, inverse 19908327272528.
(29862490908791) divides n-1.
(29862490908791)^2 > n.
n is prime by Pocklington's theorem.