Primality proof for n = 6015095699955604098509:
Take b = 2.
b^(n-1) mod n = 1.
214824846426985860661 is prime.
b^((n-1)/214824846426985860661)-1 mod n = 268435455, which is a unit, inverse 1101947508240524567808.
(214824846426985860661) divides n-1.
(214824846426985860661)^2 > n.
n is prime by Pocklington's theorem.