Primality proof for n = 6015095699955604098509:

Take b = 2.

b^(n-1) mod n = 1.

214824846426985860661 is prime.
b^((n-1)/214824846426985860661)-1 mod n = 268435455, which is a unit, inverse 1101947508240524567808.

(214824846426985860661) divides n-1.

(214824846426985860661)^2 > n.

n is prime by Pocklington's theorem.