Primality proof for n = 60171084739669153:
Take b = 2.
b^(n-1) mod n = 1.
545087 is prime.
b^((n-1)/545087)-1 mod n = 30747592161913599, which is a unit, inverse 30834981757418450.
231503 is prime.
b^((n-1)/231503)-1 mod n = 25738107422552893, which is a unit, inverse 58254498858634255.
(231503 * 545087) divides n-1.
(231503 * 545087)^2 > n.
n is prime by Pocklington's theorem.